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Frontolimbic alpha activity tracks 
intentional rest BCI control 
improvement through mindfulness 
meditation
Haiteng Jiang1, James Stieger1,2, Mary Jo Kreitzer2, Stephen Engel2 & Bin He1* 

Brain–computer interfaces (BCIs) are capable of translating human intentions into signals 
controlling an external device to assist patients with severe neuromuscular disorders. Prior work 
has demonstrated that participants with mindfulness meditation experience evince improved BCI 
performance, but the underlying neural mechanisms remain unclear. Here, we conducted a large-scale 
longitudinal intervention study by training participants in mindfulness-based stress reduction (MBSR; 
a standardized mind–body awareness training intervention), and investigated whether and how 
short-term MBSR affected sensorimotor rhythm (SMR)-based BCI performance. We hypothesize that 
MBSR training improves BCI performance by reducing mind wandering and enhancing self-awareness 
during the intentional rest BCI control, which would mainly be reflected by modulations of default-
mode network and limbic network activity. We found that MBSR training significantly improved 
BCI performance compared to controls and these behavioral enhancements were accompanied 
by increased frontolimbic alpha activity (9–15 Hz) and decreased alpha connectivity among limbic 
network, frontoparietal network, and default-mode network. Furthermore, the modulations of 
frontolimbic alpha activity were positively correlated with the duration of meditation experience and 
the extent of BCI performance improvement. Overall, these data suggest that mindfulness allows 
participant to reach a state where they can modulate frontolimbic alpha power and improve BCI 
performance for SMR-based BCI control.

A brain–computer interface (BCI) is a system that uses brain signals to control a computer or external device 
through bypassing neuromuscular pathways in order to reestablish or facilitate communication and agency to 
individuals1–4. One popular BCI system has been developed using noninvasive electroencephalography (EEG) 
to decode the user’s intention based on the sensorimotor rhythm (SMR)1,5. Accordingly, the performance of 
SMR-based BCI depends on the quality of the EEG signals, which are significantly affected by mental states6.

While the intuitive nature and continuous control of SMR-based BCI provides many benefits, large scale stud-
ies of SMR-based BCI control have found about 20% of participants are unable to use typical BCIs proficiently 
even after extensive training7,8. Interestingly, preliminary work has shown that participants with prior mind–body 
awareness training (MBAT; e.g. yoga, meditation, etc.) experience demonstrated better BCI performance com-
pared to those with little or no MBAT experience9,10. Teaching users better control over their neural activity 
through MBAT may represent a promising complementary approach to the machine learning improvement of 
BCI control as BCI use is a skill that user and system acquire together3,11.

MBAT has become increasingly popular in recent years due to its potential physical and mental health 
benefits, however how meditation leads to these benefits remain unclear12. It has been suggested that MBAT 
constitutes a family of self-regulation processes that include enhanced attention control, improved emotion 
regulation, and altered self-awareness13. Additionally, neuroimaging studies have demonstrated MBAT can induce 
large-scale brain network reconfigurations13–15, particularly in the default-mode network (DMN), frontoparietal 
network (FPN) and limbic network (LN). Coincidentally, key brain networks that are involved in different aspects 
of BCI learning and neurofeedback largely overlap with meditation-related networks16,17. Although studies sug-
gested meditation facilitates BCI learning, the neural mechanism of how meditation and BCI learning interact 
is unknown.
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To address these questions, we conducted a large-scale, longitudinal study to test whether and how short-term 
MBAT affected SMR-based BCI learning at both the behavioral and neural levels. Specifically, we focused on 
the voluntarily rest BCI condition in which participants were instructed to clear their minds—where the altered 
self-awareness involved in MBAT would be expected to have the greatest impact on cognitive processes such 
as mind-wandering18. Mind wandering is often associated with activation of the DMN19–21, while reductions in 
mind wandering and DMN activity are consistently reported during meditation22–24. Altered self-awareness as 
mediated in part by the deep limbic brain regions was the main outcome of meditation13,14 and appeared to play 
a critical role in BCI control as well17. Accordingly, we hypothesized that, during the intentional resting task of 
BCI control, MBAT participants improved their performance by reducing mind wandering and enhancing self-
awareness, which in turn would be reflected by modulations of DMN and LN activity.

Results
Behavior outcomes.  BCI performance was quantified by a percent valid correct (PVC) metric25, calculated 
as the number of hits divided by the total number of non-timeout trials (a timeout occurred when the cursor did 
not contact a target within 6 s). To conduct the statistical comparisons, we used the linear mixed-effects models 
with fixed effects of session (levels: 11), group (levels: MBSR, control). As reported previously18, for the PVC, 
MBSR participants had greater improvements in BCI performance than controls (Fig. 1). There were signifi-
cant effects in group (F(1,660) = 10.2, p < 0.005), session (F(10,660) = 6.16, p < 0.001) and the interaction between 
group and session (F(10,660) = 2.28, p < 0.05).

Increased DMN and limbic alpha power was found in the MBSR group after BCI training.  Next, 
we examined the interaction between meditation and BCI learning effects in power. The nonparametric clus-
ter permutation test revealed a spatial-spectral cluster with significantly different activity between MBSR and 
control groups after BCI training (Fig. 2a). Interestingly, the significant cluster was spectrally constrained to the 

Figure 1.   BCI performance changes over training sessions. The performance was assessed by percent valid 
correct (PVC).

Figure 2.   Meditation and learning interaction effects in power. (a) Spectral-spatial significance map identified 
by cluster permutation test. Only the significant elements were highlighted. (b) Source localization of the alpha 
(9–15 Hz) effect. (c) Summed significant t values of b in seven networks.
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9–15 Hz alpha band. A control analysis suggested that the significantly increased alpha power in MBSR was not 
due to pre-training and post-training resting-state alpha power differences (Fig. S1). Source analysis localized 
the alpha activity mainly to the frontal and limbic regions, including bilateral middle frontal gyrus, bilateral 
superior frontal gyrus (medial orbital), bilateral amygdala, and bilateral thalamus (Fig. 2b). When parcellated 
into 7 standard networks (DMN, DAN, FPN, VAN, SMN, VIS and LIM) from the literature26 and averaged, the 
most involved networks were DMN and LIM (Fig. 2c).

Decreased frontolimbic alpha connectivity in the MBSR group after BCI training.  After iden-
tifying the interaction effect in the alpha power, we then investigated the potential difference in functional 
connectivity between groups. The functional connectivity at the source level was estimated by power envelope 
correlation following the DICS source reconstruction27. When comparing the BCI learning differences (Last 
session vs. First session) between MBSR and control groups, there were widespread learning-related changes 
of functional connectivity identified by network based statistics (Fig. 3a). This network consisted of 51 regions 
and 72 connections, mainly involving the right inferior frontal gyrus (opercular part), left anterior cingulate 
and paracingulate gyri, right rolandic operculum, left superior frontal gyrus (medial part), left olfactory cortex 
and right insula. When parceling the connections into seven well-characterized resting-state networks, the top 
3 most engaged networks were LN, FPN and DMN (Fig. 3b). Interestingly, the network responses of the MBSR 
and control groups were in the opposite direction: decreased network connectivity was found in the MBSR 
group, whereas increased network connectivity was found in the control group after BCI training (Fig. 3c).

Correlation with meditation experience and BCI performance improvement.  Finally, we asked 
whether the identified interaction effect in power and functional connectivity had behavior relevance by check-
ing their correlations with meditation experience and BCI performance improvement (Fig. 4). That is, whether 
the modulations of the interaction effect in power and functional connectivity correspond to both meditation 
experience and BCI performance changes. To conduct the correlation analysis, we extracted the interacting 
power regions (Fig. 2b) and functional connectivity networks (Fig. 3a) and computed their differences between 
first and last BCI training sessions. Importantly, we found that the frontolimbic alpha power modulations sig-
nificantly correlated with both meditation experience (r = 0.36, p = 0.03) and BCI performance changes (r = 0.37, 
p = 0.003) (Fig. 4a,b). However, no such effects were found in the functional connectivity analysis with either 
meditation experience or BCI performance changes (Fig. 4c,d).

Discussion
Our work demonstrates a short-term MBAT intervention—mindfulness-based stress reduction (MBSR)—
improved intentional rest BCI control performance by increasing DMN and LN alpha power and decreased 
alpha connectivity between DMN, FPN, and LN. Furthermore, modulations of DMN and LN alpha power were 
correlated with both meditation experience and BCI performance improvement. Overall, these findings suggest 
the critical roles of DMN and LN in the interaction between meditation and BCI learning and may have implica-
tions for future SMR-based BCI design and BCI training protocols.

We sought to investigate whether and how MBAT could impact BCI training. Our data showed that both 
MBSR and control groups had a BCI learning effect. However, the degree of improvement was significantly 
greater in the MBSR group compared to control group and there was a significant interaction effect between 
meditation and BCI learning; the BCI performance improvement in MBSR could be explained by increased 
DMN and LN alpha power.

Figure 3.   Meditation and learning interaction effects in the alpha band connectivity. (a) Significantly different 
network topographies identified by network based statistics. Each link represents a connection between two 
brain regions. (b) Network summary of (a) by parceling the connections into seven well-characterized resting-
state networks. The mean degree is the averaged number of links within the seven networks. (c) Changes of 
mean connectivity strength within the identified network in (a).
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Although we initially did not have a specific hypothesis about the frequency band and used a data-driven 
cluster permutation test to identify it, the identified band was confined to 9–15 Hz alpha power (Fig. 2a). It should 
be pointed out that the 9–15 Hz alpha defined here slightly deviates from the classical alpha range between 8 
and 13 Hz28. Increased alpha power during rest or between rest and meditation have been widely reported when 
comparing meditation practitioners to controls29,30. As such, the enhanced alpha during the intentional rest 
BCI control could be confounded by the resting-state baseline differences after MBSR intervention. However, 
there were no significant resting-state alpha power differences between the MBSR and control groups after the 
intervention Fig. S1). Moreover, the main meditation effect (MBSR(Last+First) vs. Control(Last+First), Fig. S2) and BCI 
learning effect (Last(MBSR+Control) vs. First(MBSR+Control), Fig. S3) were identified other than the interaction effect. 
When pooling the first and last BCI sessions together and comparing between the MBSR and control groups 
(meditation effect), 12–15 Hz oscillatory activity over DMN and FPN was found to be increased in the MBSR 
group (Figure S2). When combing the MBSR and control groups and comparing the last and first BCI session 
(learning effect), there were widespread 4–30 Hz oscillatory activity increases after BCI training (Figure S3). 
Overall, these results suggest that the MBSR intervention induced frequency-specific and network-specific oscil-
latory power modulations in meditation, BCI learning, and their interaction.

Although the up-regulation of alpha power appears to be responsible for the gains in performance observed 
in our study, the nature of alpha oscillations in the interaction between meditation and BCI learning requires 
further study. Increased alpha activities are often believed to signify greater inhibition or gating of task-irrele-
vant information31,32, which is thought to underlie the behavior gains during working memory and sustained 
attention tasks33–35. The DMN was the most prominent network at rest and often found during the periods of 
mind wandering, while reductions in mind-wandering and DMN activity were consistently reported during 
meditation19,22. Therefore, the increased DMN alpha activity in MBSR participants may suggest that the MBSR 
group may utilize meditation skills during intentional BCI rest control and therefore reduce mind wandering 
by disengaging the DMN.

Figure 4.   Correlation between neural signals and behavior. (a) Correlation between alpha power changes and 
meditation experience in the MBSR group. (b) Correlation between alpha power and PVC changes. (c) Similar 
to (a), but correlated with alpha connectivity. (d) Similar to (b) but correlated with alpha connectivity.
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Moreover, increased LN alpha activity was found in the MBSR group as well, which may be associated with 
diminished self- referential processing and enhanced body awareness, leading to improved BCI control13,17. 
Most critically, the extent of DMN and LN alpha modulations were related to both the amount of time invested 
in meditation practice, and BCI performance improvement (Fig. 4a,b), indicating the neural and behavior gains 
can be trained in a dose-dependent manner. Additionally, these results also suggest that the default mode and 
limbic networks are the common networks underlying the meditation and BCI learning interaction.

Brain regions are not isolated one from another, and they connect to each other. Following the alpha power 
investigation, we examined the potential connectivity alterations after the MBSR intervention. A significant 
meditation and BCI interaction effect was found in the connectivity among the DMN, FPN, and LNs. Interest-
ingly, the changes in alpha connectivity of the MBSR and control groups were in the opposite direction after 
BCI training (decreased in MBSR while increased in controls). The decreased alpha connectivity in the MBSR 
group may suggest their ability to limit the processing of unnecessary information during the intentional rest BCI 
control task36. However, the modulations of alpha connectivity were not associated with meditation experience 
or BCI performance changes (Fig. 4c,d).

A few limitations should be noted. First, we only focused on the intentional rest BCI control but not the 
overall task. While MBSR participants showed greater improvement in other BCI tasks, the differences were not 
significant compared to controls. These may question the capability of MBAT for improving other aspects of BCI 
control. Longer or more intensive interventions may be more effective10,37. Alternatively, changing the BCI task 
to one more akin to the skills learned through meditation may help realize greater gains in performance. Second, 
due to the different number of training sessions across participants, we subtracted the last and first session to 
represent the learning effect. It would be more optimal to apply the linear mixture model to track the learning 
curve with the same number of sessions in the future. Lastly, the study lacked an active control group to eliminate 
the possibility of expectancy effects. However, one prior study showed significantly higher BCI accuracy in the 
mindfulness meditation training group compared to the music training group, indicating the effects of medita-
tion above and beyond expectancy effects9. Moreover, the correlation between alpha power modulations and 
meditation experience suggested that these observed effects were specific to mindfulness meditation practice and 
not due to expectation. Nevertheless, an actively controlled double-blind trial will be needed to fully establish 
the translational promise of our results.

In conclusion, we found that mindfulness meditation could improve the intentional rest BCI control per-
formance, and further that frontolimbic alpha power modulations are the key neural mechanisms underlying 
the interaction between meditation and BCI learning. Our findings suggested that mindfulness training allows 
participants to enter states that modulate these signals from frontolimbic regions, and so being beneficial for 
SMR-based BCI control.

Methods
Participants and task protocol.  The data analyzed here were collected from our previous large-scale 
longitudinal meditation BCI study approved by the Institutional Review Boards of the University of Minnesota 
and Carnegie Mellon University18. All participants provided written informed consent. Briefly, 144 participants 
were recruited in the intervention study and 76 of them completed all experimental requirements, which were 
performed in accordance with Declaration of Helsinki. Following an initial BCI performance assessment, par-
ticipants were randomly assigned to either the MBSR group or the waitlist control group. The MBSR interven-
tion aims to teach mindfulness, which is defined as “awareness that arises through paying attention, on purpose, 
in the present moment, non-judgmentally”38. After 8 weeks of the MBSR intervention or comparable waiting 
period, participants completed 6 or 10 BCI training sessions. The BCI task involved left (right) hand motor 
imagery to move a virtual cursor to the left (right), motor imagery of both hands to move the cursor up, and 
a voluntary rest to move the cursor down. The BCI control signal was extracted by using autoregressive (AR) 
spectral amplitudes of the small Laplacian filtered electrodes C3 and C4 in a 3 Hz bin surrounding 12 Hz based 
on the principle of maximum entropy spectral estimation39. Maximum entropy spectral estimation is a spec-
tral density estimation method by choosing the spectrum that corresponds to the most random or the most 
unpredictable time series whose autocorrelation function agrees with the known values. Mathematically, the 
maximum entropy method is equivalent to least-squares fitting the available time-series data to an AR model. 
The duality between the maximum entropy method of spectral analysis and the AR representation of the data 
allows AR to get the improved spectral decomposition. After the spectral estimation, the spectral amplitudes 
were normalized to zero mean and unit variance. The magnitude of the cursor movement was determined by 
the normalized AR amplitude difference, updated every 40 ms. In this following-up study, 62 participants were 
included in the final analysis and we focus on the down condition. For the down BCI cursor control, participants 
were instructed to rest voluntarily; in other words, clear their minds, which is most similar to the meditation 
process. Moreover, due to different numbers of BCI training sessions across participants, we used the first and 
the last session EEG data to model the BCI learning effect.

EEG acquisition.  Participants were seated facing a computer monitor while wearing a 64-channel EEG cap, 
which was set up according to the international 10–10 system. EEG was acquired using SynAmps RT amplifiers 
and Neuroscan acquisition software (Compumedics Neuroscan, VA). The EEG signals were sampled at 1000 Hz 
and 0.1 to 200 Hz bandpass filtered with an additional 60 Hz notch filter and stored for offline analysis.

EEG preprocessing and spectral analysis.  Offline EEG data analysis was conducted using EEGLAB 
and Fieldtrip toolbox40,41. Most standard preprocessing was performed in EEGLAB (version 14.1.2). Initially, 
the data were bandpass filtered between 1 and 100  Hz, followed by down sampling from 1  kHz to 250  Hz. 
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Noisy channels, identified through visual inspection, were replaced by local weighted averages interpolated 
through spherical splines42. The data were re-referenced to a common average. Ocular artifacts were removed 
using independent component analysis (ICA) and a template matching procedure. Briefly, the binica algorithm 
implemented in EEGLAB was used to decompose the EEG data into independent components. Dimensionality 
reduction was first performed using principle components analysis (30 components), which resulted in 30 inde-
pendent components. Two templates were built by averaging roughly 500 manually labeled eyeblink and EOG 
artifact components. Then, the two components with the greatest absolute correlation with the artifact templates 
were selected to be removed from each BCI session (two components removed in total for each session). Finally, 
the data were converted to the FieldTrip data format (FieldTrip version 20180723) and noisy trials with exces-
sive variance were removed by visual inspection41. Runs were broken into individual trials which included 2 s 
inter-trial intervals, 2 s target presentation, and a variable feedback control period. During the feedback control 
period, the participant was given up to 6 s to direct a cursor toward the correct target. Given the trials were all of 
the different lengths, we chose a consistent window of one second before the end of feedback for the analysis to 
ensure the consistency. Subsequently, we computed the spectral power from 1 to 50 Hz in steps of 1 Hz using a 
Hanning taper. Spectral power was computed for each trial and then averaged at the sensor level.

Source analysis.  We used dynamic imaging of coherent sources (DICS) to localize the underlying source 
of oscillatory activity27. By integrating the standard Colin27 MNI template, standard 10–10 EEG electrode 
positions, and boundary element model (BEM), the leadfield was calculated with 3898 equally distributed grid 
points in the gray matter. Based on the leadfield and the cross-spectral density matrix, a DICS spatial filter was 
then constructed to maximize the activity at the interested grid point while suppressing all the other grid points. 
After that, the spatial distribution of power at the source level was obtained by multiplying the spatial filter and 
the Fourier-transformed sensor-level data.

Functional connectivity analysis.  To assess all-to-all connectivity at the source level, we parceled the 
whole brain into 90 regions of interest (ROIs) based on the Automated Anatomical Labeling (AAL) template43. 
All cortical and subcortical regions within the AAL template except the cerebellum were included (Table S1). To 
avoid size difference biases between different ROIs, we chose the centroid within each ROI as the representative 
position, which is defined as the grid point with the minimum Euclidean distance to all the other grid points 
inside the ROI. Therefore, the frequency-specific whole-brain connectivity map has (90 × 89/2 =) 4,005 pairs of 
connections (90 × 90 2-D matrix). Furthermore, each ROI was assigned to one of 7 well-characterized resting-
state networks44, derived from resting-state intrinsic connectivity analysis of 1,000 healthy participants26: default 
mode network (DMN), dorsal attention network (DAN), frontoparietal network (FPN), ventral attention net-
work (VAN), somatomotor network (SMN), visual network (VIS) and limbic plus subcortical regions (LIM). To 
measure the functional connectivity, we calculated the power envelope correlation, which is suggested to be a 
robust and consistent method for stationary connectivity estimation45. The power envelope correlation method 
used here first orthogonalized the signals and then computed the linear correlation between these power enve-
lopes to discount the spurious correlation caused by spatial leakage46.

Statistical analysis.  To assess the meditation and BCI learning interaction effect, we compared the differ-
ence of the last session and the first session between the MBSR group and the control group (MBSR(Last-First) vs. 
Control(Last-First)). In the power statistics, we used the nonparametric cluster permutation test to control for mul-
tiple comparisons47. At the sensor level, an independent two-sample t-test (MBSR(Last-First) vs. Control(Last-First)) 
was performed for each frequency and sensor, and elements with t-values exceeding the significant threshold 
(P < 0.05) were used as cluster candidates. Next, cluster candidates of sensors and frequency bins were subse-
quently clustered based on spatial-spectral adjacency. The spatial adjacency was defined by calculating a tri-
angulation based on a two-dimensional projection of the sensor position. Simultaneously, the frequency bin 
pairs with 1 Hz difference (frequency resolution) were considered spectral adjacent. The cluster was formed by 
connecting the adjacent sensors and frequency bins, and at least two adjacent frequency bins and two adjacent 
sensors were required to construct a spatial-spectral cluster. The cluster scores were then computed as the sum 
of the t-values over all elements within the cluster. To get the reference distribution, we randomly shuffled the 
group labels 5,000 times and selected the maximum summed cluster t-statistic for each randomization. Finally, 
p-values were obtained by comparing the observed scores to the reference distribution (two-tailed, p < 0.05). 
The procedure was similar for the source level power statistics at a specific band, except that each cluster was 
formed based on spatial adjacency instead of spatial-spectral adjacency. The visualizations of power statistics at 
the sensor level and source level were done with Fieldtrip toolbox (https://​www.​field​tript​oolbox.​org/, Version: 
20180805).

Network based statistics (NBS) were utilized to obtain significant functional connectivity differences48. Similar 
to the power statistics, we compared the difference of the last session and the first session between the MBSR 
group and the control group for each network connection using an independent two-sample t-test. Based on the 
pruned graphs (p < 0.005), topological clusters were formed and cluster scores were defined as the number of 
connections within the cluster. For the reference distribution, the cluster with the maximum number of connec-
tions was used as a test statistic. By randomizing the data across groups and recalculating the test statistic 5000 
times, we generated the reference distribution, which was later used to calculate the statistics of the observed 
topological clusters. These statistics were conducted with the open-source NBS toolbox (http://​www.​nitrc.​org/​
proje​cts/​nbs, Version: 1.2). Besides, the functional network was visualized with R Circlize package (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​circl​ize/​index.​html, Version: 0.4.12)49.

https://www.fieldtriptoolbox.org/
http://www.nitrc.org/projects/nbs
http://www.nitrc.org/projects/nbs
https://cran.r-project.org/web/packages/circlize/index.html
https://cran.r-project.org/web/packages/circlize/index.html
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Data availability
The analysis codes with sample data  are available at https://​github.​com/​bfinl/​BCI_​Conne​ctivi​ty . Experimental 
data are available at https://​doi.​org/​10.​6084/​m9.​figsh​are.​13123​148.
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